Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nucleic Acids Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747347

RESUMO

Intrinsically disordered proteins and protein regions (IDPs/IDRs) carry out important biological functions without relying on a single well-defined conformation. As these proteins are a challenge to study experimentally, computational methods play important roles in their characterization. One of the commonly used tools is the IUPred web server which provides prediction of disordered regions and their binding sites. IUPred is rooted in a simple biophysical model and uses a limited number of parameters largely derived on globular protein structures only. This enabled an incredibly fast and robust prediction method, however, its limitations have also become apparent in light of recent breakthrough methods using deep learning techniques. Here, we present AIUPred, a novel version of IUPred which incorporates deep learning techniques into the energy estimation framework. It achieves improved performance while keeping the robustness of the original method. Based on the evaluation of recent benchmark datasets, AIUPred scored amongst the top three single sequence based methods. With a new web server we offer fast and reliable visual analysis for users as well as options to analyze whole genomes in mere seconds with the downloadable package. AIUPred is available at https://aiupred.elte.hu.

2.
Biomolecules ; 13(10)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37892124

RESUMO

Disorder prediction methods that can discriminate between ordered and disordered regions have contributed fundamentally to our understanding of the properties and prevalence of intrinsically disordered proteins (IDPs) in proteomes as well as their functional roles. However, a recent large-scale assessment of the performance of these methods indicated that there is still room for further improvements, necessitating novel approaches to understand the strengths and weaknesses of individual methods. In this study, we compared two methods, IUPred and disorder prediction, based on the pLDDT scores derived from AlphaFold2 (AF2) models. We evaluated these methods using a dataset from the DisProt database, consisting of experimentally characterized disordered regions and subsets associated with diverse experimental methods and functions. IUPred and AF2 provided consistent predictions in 79% of cases for long disordered regions; however, for 15% of these cases, they both suggested order in disagreement with annotations. These discrepancies arose primarily due to weak experimental support, the presence of intermediate states, or context-dependent behavior, such as binding-induced transitions. Furthermore, AF2 tended to predict helical regions with high pLDDT scores within disordered segments, while IUPred had limitations in identifying linker regions. These results provide valuable insights into the inherent limitations and potential biases of disorder prediction methods.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Conformação Proteica , Furilfuramida , Proteoma/metabolismo , Bases de Dados Factuais
3.
Nat Protoc ; 18(11): 3157-3172, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740110

RESUMO

Intrinsic disorder is instrumental for a wide range of protein functions, and its analysis, using computational predictions from primary structures, complements secondary and tertiary structure-based approaches. In this Tutorial, we provide an overview and comparison of 23 publicly available computational tools with complementary parameters useful for intrinsic disorder prediction, partly relying on results from the Critical Assessment of protein Intrinsic Disorder prediction experiment. We consider factors such as accuracy, runtime, availability and the need for functional insights. The selected tools are available as web servers and downloadable programs, offer state-of-the-art predictions and can be used in a high-throughput manner. We provide examples and instructions for the selected tools to illustrate practical aspects related to the submission, collection and interpretation of predictions, as well as the timing and their limitations. We highlight two predictors for intrinsically disordered proteins, flDPnn as accurate and fast and IUPred as very fast and moderately accurate, while suggesting ANCHOR2 and MoRFchibi as two of the best-performing predictors for intrinsically disordered region binding. We link these tools to additional resources, including databases of predictions and web servers that integrate multiple predictive methods. Altogether, this Tutorial provides a hands-on guide to comparatively evaluating multiple predictors, submitting and collecting their own predictions, and reading and interpreting results. It is suitable for experimentalists and computational biologists interested in accurately and conveniently identifying intrinsic disorder, facilitating the functional characterization of the rapidly growing collections of protein sequences.


Assuntos
Biologia Computacional , Proteínas Intrinsicamente Desordenadas , Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos
4.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400558

RESUMO

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica
5.
Protein Sci ; 32(7): e4655, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167423

RESUMO

DisProt is the primary repository of Intrinsically Disordered Proteins (IDPs). This database is manually curated and the annotations there have strong experimental support. Currently, DisProt contains a relatively small number of proteins highlighting the importance of transferring annotations regarding verified disorder state and corresponding functions to homologous proteins in other species. In such a way, providing them with highly valuable information to better understand their biological roles. While the principles and practicalities of homology transfer are well-established for globular proteins, these are largely lacking for disordered proteins. We used DisProt to evaluate the transferability of the annotation terms to orthologous proteins. For each protein, we looked for their orthologs, with the assumption that they will have a similar function. Then, for each protein and their orthologs, we made multiple sequence alignments (MSAs). Disordered sequences are fast evolving and can be hard to align, therefore, we implemented alignment quality control steps ensuring robust alignments before mapping the annotations. We have designed a pipeline to obtain good-quality MSAs and to transfer annotations from any protein to their orthologs. Applying the pipeline to DisProt proteins, from the 1731 entries with 5623 annotations, we can reach 97,555 orthologs and transfer a total of 301,190 terms by homology. We also provide a web server for consulting the results of DisProt proteins and execute the pipeline for any other protein. The server Homology Transfer IDP (HoTIDP) is accessible at http://hotidp.leloir.org.ar.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Alinhamento de Sequência , Bases de Dados Factuais
6.
Protein Sci ; 32(1): e4522, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36452990

RESUMO

Intrinsically disordered proteins (IDPs) play important roles in a wide range of biological processes and have been associated with various diseases, including cancer. In the last few years, cancer genome projects have systematically collected genetic variations underlying multiple cancer types. In parallel, the number and different types of disordered proteins characterized by experimental methods have also significantly increased. Nevertheless, the role of IDPs in various types of cancer is still not well understood. In this work, we present DisCanVis, a novel visualization tool for cancer mutations with a special focus on IDPs. In order to aid the interpretation of observed mutations, genome level information is combined with information about the structural and functional properties of proteins. The web server enables users to inspect individual proteins, collect examples with existing annotations of protein disorder and associated function or to discover currently uncharacterized examples with likely disease relevance. Through a REST API interface and precompiled tables the analysis can be extended to a group of proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Neoplasias , Humanos , Proteínas Intrinsicamente Desordenadas/química , Neoplasias/genética , Mutação , Conformação Proteica
7.
FEBS J ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471658

RESUMO

Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.

8.
Biomolecules ; 12(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36291695

RESUMO

Intrinsically disordered regions (IDRs) in protein sequences are flexible, have low structural constraints and as a result have faster rates of evolution. This lack of evolutionary conservation greatly limits the use of sequence homology for the classification and functional assessment of IDRs, as opposed to globular domains. The study of IDRs requires other properties for their classification and functional prediction. While composition bias is not a necessary property of IDRs, compositionally biased regions (CBRs) have been noted as frequent part of IDRs. We hypothesized that to characterize IDRs, it could be helpful to study their overlap with particular types of CBRs. Here, we evaluate this overlap in the human proteome. A total of 2/3 of residues in IDRs overlap CBRs. Considering CBRs enriched in one type of amino acid, we can distinguish CBRs that tend to be fully included within long IDRs (R, H, N, D, P, G), from those that partially overlap shorter IDRs (S, E, K, T), and others that tend to overlap IDR terminals (Q, A). CBRs overlap more often IDRs in nuclear proteins and in proteins involved in liquid-liquid phase separation (LLPS). Study of protein interaction networks reveals the enrichment of CBRs in IDRs by tandem repetition of short linear motifs (rich in S or P), and the existence of E-rich polar regions that could support specific protein interactions with non-specific interactions. Our results open ways to pin down the function of IDRs from their partial compositional biases.


Assuntos
Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteoma , Viés , Aminoácidos , Proteínas Nucleares/metabolismo , Conformação Proteica
9.
Sci Rep ; 12(1): 15623, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114230

RESUMO

Dynein light chain LC8 is a small dimeric hub protein that recognizes its partners through short linear motifs and is commonly assumed to drive their dimerization. It has more than 100 known binding partners involved in a wide range of cellular processes. Recent large-scale interaction studies suggested that LC8 could also play a role in the ciliary/centrosome system. However, the cellular function of LC8 in this system remains elusive. In this work, we characterized the interaction of LC8 with the centrosomal protein lebercilin (LCA5), which is associated with a specific form of ciliopathy. We showed that LCA5 binds LC8 through two linear motifs. In contrast to the commonly accepted model, LCA5 forms dimers through extensive coiled coil formation in a LC8-independent manner. However, LC8 enhances the oligomerization ability of LCA5 that requires a finely balanced interplay of coiled coil segments and both binding motifs. Based on our results, we propose that LC8 acts as an oligomerization engine that is responsible for the higher order oligomer formation of LCA5. As LCA5 shares several common features with other centrosomal proteins, the presented LC8 driven oligomerization could be widespread among centrosomal proteins, highlighting an important novel cellular function of LC8.


Assuntos
Centrossomo , Dineínas , Centrossomo/metabolismo , Dimerização , Dineínas/metabolismo , Ligação Proteica
10.
Prog Mol Biol Transl Sci ; 183: 45-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34656334

RESUMO

Protein sequences are the result of an evolutionary process that involves the balancing act of experimenting with novel mutations and selecting out those that have an undesirable functional outcome. In the case of globular proteins, the function relies on a well-defined conformation, therefore, there is a strong evolutionary pressure to preserve the structure. However, different evolutionary rules might apply for the group of intrinsically disordered regions and proteins (IDR/IDPs) that exist as an ensemble of fluctuating conformations. The function of IDRs can directly originate from their disordered state or arise through different types of molecular recognition processes. There is an amazing variety of ways IDRs can carry out their functions, and this is also reflected in their evolutionary properties. In this chapter we give an overview of the different types of evolutionary behavior of disordered proteins and associated functions in normal and disease settings.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sequência de Aminoácidos , Evolução Biológica , Evolução Molecular , Humanos , Conformação Proteica
11.
Nucleic Acids Res ; 49(W1): W297-W303, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34048569

RESUMO

Intrinsically disordered proteins and protein regions (IDPs/IDRs) exist without a single well-defined conformation. They carry out important biological functions with multifaceted roles which is also reflected in their evolutionary behavior. Computational methods play important roles in the characterization of IDRs. One of the commonly used disorder prediction methods is IUPred, which relies on an energy estimation approach. The IUPred web server takes an amino acid sequence or a Uniprot ID/accession as an input and predicts the tendency for each amino acid to be in a disordered region with an option to also predict context-dependent disordered regions. In this new iteration of IUPred, we added multiple novel features to enhance the prediction capabilities of the server. First, learning from the latest evaluation of disorder prediction methods we introduced multiple new smoothing functions to the prediction that decreases noise and increases the performance of the predictions. We constructed a dataset consisting of experimentally verified ordered/disordered regions with unambiguous annotations which were added to the prediction. We also introduced a novel tool that enables the exploration of the evolutionary conservation of protein disorder coupled to sequence conservation in model organisms. The web server is freely available to users and accessible at https://iupred3.elte.hu.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Software , Algoritmos , Sequência de Aminoácidos , Sequência Conservada , Fator de Iniciação 2 em Eucariotos/química , Evolução Molecular , Proteínas Fúngicas/química , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Análise de Sequência de Proteína
12.
Biomolecules ; 11(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806614

RESUMO

Many proteins contain intrinsically disordered regions (IDRs) which carry out important functions without relying on a single well-defined conformation. IDRs are increasingly recognized as critical elements of regulatory networks and have been also associated with cancer. However, it is unknown whether mutations targeting IDRs represent a distinct class of driver events associated with specific molecular and system-level properties, cancer types and treatment options. Here, we used an integrative computational approach to explore the direct role of intrinsically disordered protein regions driving cancer. We showed that around 20% of cancer drivers are primarily targeted through a disordered region. These IDRs can function in multiple ways which are distinct from the functional mechanisms of ordered drivers. Disordered drivers play a central role in context-dependent interaction networks and are enriched in specific biological processes such as transcription, gene expression regulation and protein degradation. Furthermore, their modulation represents an alternative mechanism for the emergence of all known cancer hallmarks. Importantly, in certain cancer patients, mutations of disordered drivers represent key driving events. However, treatment options for such patients are currently severely limited. The presented study highlights a largely overlooked class of cancer drivers associated with specific cancer types that need novel therapeutic options.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Neoplasias/metabolismo , Evolução Molecular , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Mutação , Neoplasias/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Conformação Proteica
13.
Nucleic Acids Res ; 49(D1): D355-D360, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33119751

RESUMO

Protein and lipid membrane interactions play fundamental roles in a large number of cellular processes (e.g. signalling, vesicle trafficking, or viral invasion). A growing number of examples indicate that such interactions can also rely on intrinsically disordered protein regions (IDRs), which can form specific reversible interactions not only with proteins but also with lipids. We named IDRs involved in such membrane lipid-induced disorder-to-order transition as MemMoRFs, in an analogy to IDRs exhibiting disorder-to-order transition upon interaction with protein partners termed Molecular Recognition Features (MoRFs). Currently, both the experimental detection and computational characterization of MemMoRFs are challenging, and information about these regions are scattered in the literature. To facilitate the related investigations we generated a comprehensive database of experimentally validated MemMoRFs based on manual curation of literature and structural data. To characterize the dynamics of MemMoRFs, secondary structure propensity and flexibility calculated from nuclear magnetic resonance chemical shifts were incorporated into the database. These data were supplemented by inclusion of sentences from papers, functional data and disease-related information. The MemMoRF database can be accessed via a user-friendly interface at https://memmorf.hegelab.org, potentially providing a central resource for the characterization of disordered regions in transmembrane and membrane-associated proteins.


Assuntos
Membrana Celular/metabolismo , Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Fases de Leitura Aberta/genética , Internet , Espectroscopia de Ressonância Magnética , Ligação Proteica
14.
Bioinformatics ; 36(22-23): 5533-5534, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325498

RESUMO

MOTIVATION: The earlier version of MobiDB-lite is currently used in large-scale proteome annotation platforms to detect intrinsic disorder. However, new theoretical models allow for the classification of intrinsically disordered regions into subtypes from sequence features associated with specific polymeric properties or compositional bias. RESULTS: MobiDB-lite 3.0 maintains its previous speed and performance but also provides a finer classification of disorder by identifying regions with characteristics of polyolyampholytes, positive or negative polyelectrolytes, low-complexity regions or enriched in cysteine, proline or glycine or polar residues. Subregions are abundantly detected in IDRs of the human proteome. The new version of MobiDB-lite represents a new step for the proteome level analysis of protein disorder. AVAILABILITY AND IMPLEMENTATION: Both the MobiDB-lite 3.0 source code and a docker container are available from the GitHub repository: https://github.com/BioComputingUP/MobiDB-lite.

15.
Nucleic Acids Res ; 49(D1): D361-D367, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237329

RESUMO

The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Algoritmos , Internet , Anotação de Sequência Molecular , Processamento de Proteína Pós-Traducional , Software
16.
Biomolecules ; 10(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036302

RESUMO

Intrinsically disordered proteins (IDPs) contain regions lacking intrinsic globular structure (intrinsically disordered regions, IDRs). IDPs are present across the tree of life, with great variability of IDR type and frequency even between closely related taxa. To investigate the function of IDRs, we evaluated and compared the distribution of disorder content in 10,695 reference proteomes, confirming its high variability and finding certain correlation along the Euteleostomi (bony vertebrates) lineage to number of cell types. We used the comparison of orthologs to study the function of disorder related to increase in cell types, observing that multiple interacting subunits of protein complexes might gain IDRs in evolution, thus stressing the function of IDRs in modulating protein-protein interactions, particularly in the cell nucleus. Interestingly, the conservation of local compositional biases of IDPs follows residue-type specific patterns, with E- and K-rich regions being evolutionarily stable and Q- and A-rich regions being more dynamic. We provide a framework for targeted evolutionary studies of the emergence of IDRs. We believe that, given the large variability of IDR distributions in different species, studies using this evolutionary perspective are required.


Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Proteínas Intrinsicamente Desordenadas , Análise de Sequência de Proteína , Vertebrados/genética , Animais , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética
17.
Biomolecules ; 10(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731489

RESUMO

Cancer is a heterogeneous genetic disease that alters the proper functioning of proteins involved in key regulatory processes such as cell cycle, DNA repair, survival, or apoptosis. Mutations often accumulate in hot-spots regions, highlighting critical functional modules within these proteins that need to be altered, amplified, or abolished for tumor formation. Recent evidence suggests that these mutational hotspots can correspond not only to globular domains, but also to intrinsically disordered regions (IDRs), which play a significant role in a subset of cancer types. IDRs have distinct functional properties that originate from their inherent flexibility. Generally, they correspond to more recent evolutionary inventions and show larger sequence variations across species. In this work, we analyzed the evolutionary origin of disordered regions that are specifically targeted in cancer. Surprisingly, the majority of these disordered cancer risk regions showed remarkable conservation with ancient evolutionary origin, stemming from the earliest multicellular animals or even beyond. Nevertheless, we encountered several examples where the mutated region emerged at a later stage compared with the origin of the gene family. We also showed the cancer risk regions become quickly fixated after their emergence, but evolution continues to tinker with their genes with novel regulatory elements introduced even at the level of humans. Our concise analysis provides a much clearer picture of the emergence of key regulatory elements in proteins and highlights the importance of taking into account the modular organisation of proteins for the analyses of evolutionary origin.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Neoplasias/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Evolução Molecular , Duplicação Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Mutação , Conformação Proteica , Domínios Proteicos
18.
Nucleic Acids Res ; 48(W1): W77-W84, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421769

RESUMO

Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToLoCo - PLAtform of TOols for LOw COmplexity-a meta-server that integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. In addition, the union or intersection of the results of the search on a query sequence can be obtained. By developing the PlaToLoCo meta-server, we provide the community with a fast and easily accessible tool for the analysis of LCRs with additional information included to aid the interpretation of the results. The PlaToLoCo platform is available at: http://platoloco.aei.polsl.pl/.


Assuntos
Proteínas/química , Software , Aminoácidos/análise , Gráficos por Computador , Humanos , Proteínas de Membrana/química , Anotação de Sequência Molecular , Domínios Proteicos , Análise de Sequência de Proteína
19.
Curr Protoc Bioinformatics ; 70(1): e99, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32237272

RESUMO

IUPred2A is a combined prediction tool designed to discover intrinsically disordered or conditionally disordered proteins and protein regions. Intrinsically disordered regions exist without a well-defined three-dimensional structure in isolation but carry out important biological functions. Over the years, various prediction methods have been developed to characterize disordered regions. The existence of disordered segments can also be dependent on different factors such as binding partners or environmental traits like pH or redox potential, and recognizing such regions represents additional computational challenges. In this article, we present detailed instructions on how to use IUPred2A, one of the most widely used tools for the prediction of disordered regions/proteins or conditionally disordered segments, and provide examples of how the predictions can be interpreted in different contexts. © 2020 The Authors. Basic Protocol 1: Analyzing disorder propensity with IUPred2A online Basic Protocol 2: Analyzing disordered binding regions using ANCHOR2 Support Protocol 1: Interpretation of the results Basic Protocol 3: Analyzing redox-sensitive disordered regions Support Protocol 2: Download options Support Protocol 3: REST API for programmatic purposes Basic Protocol 4: Using IUPred2A locally.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Software , Humanos , Oxirredução , Ligação Proteica , Proteínas/metabolismo
20.
Brief Bioinform ; 21(2): 458-472, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698641

RESUMO

There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better understanding of the evolution and the connection between structure and function of LCRs. This will require the use of standards for the generation and exchange of data describing all aspects of LCRs. SHORT ABSTRACT: There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different properties related to LCRs, using examples.


Assuntos
Proteínas/química , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Evolução Molecular , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA